Integrated Ceramic Membrane System for H₂ Production

Cooperative Agreement: DE-FC36-00GO10534

Joe Schwartz Ray Drnevich Prasad Apte Ashok Damle

Praxair - Tonawanda, NY Research Triangle Institute -Research Triangle Park, NC

DOE Annual Merit Review Meeting May 24, 2004

Copyright © 2004 Praxair, Inc.

This paper was written with support of the U.S. Department of Energy under Contract No. DE-FC36-00GO10534. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper. This presentation does not contain any proprietary or confidential information.

Objectives

- Program Develop a low-cost reactive membrane based hydrogen production system
 - Use existing natural gas infrastructure
 - High thermal efficiency
 - Transportation and industrial markets
- Phase IIA Develop a cost-effective hydrogen transport membrane (HTM)*
 - Produce Pd-based HTM
 - Low-cost hydrogen separation and purification
 - Demonstrate HTM performance in non-reactive environments

^{*} The OTM is under development outside of this program

	Phase I	Phase IIA	Total	FY2004
DOE	\$224,679	\$371,869	\$596,548	\$116,941
Praxair	\$ 74,893	\$123,957	\$198,850	\$38,980
TOTAL	\$299,572	\$495,826	\$795,398	\$155,922

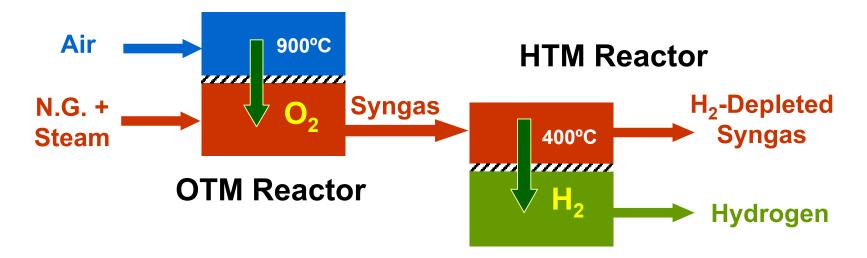
FY2004 spending through March 31, 2004

DOE Technical Barriers

- > A. Fuel Processor Capital Costs
- B. Operation and Maintenance (O&M)
- > C. Feedstock and Water Issues
- > E. Control and Safety
- > Z. Catalysts
- > AA. Oxygen Separation Technology
- AB. Hydrogen Separation and Purification

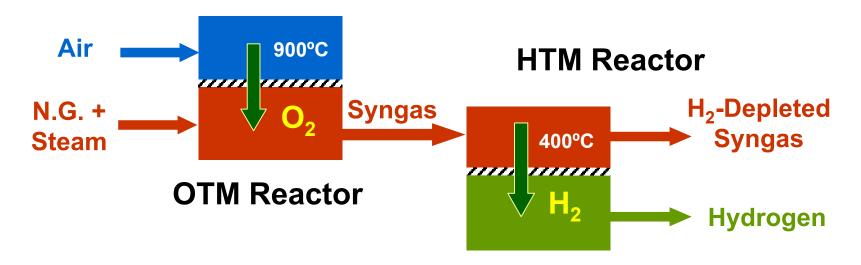
Palladium Membrane Targets

	2003	2005	2010
Flux (scfh/ft²)	60	100	200
Cost (\$/ft ²)	150-200	100-150	< 100
Durability (hrs)	< 1000	50,000	100,000
Operating Temp (°C)	300-600	300-600	300-600
Parasitic Power (kWh/1000 scfh)	3.2	3.0	2.8


- Flux based on 20 psid hydrogen pressure at 400°C
- Parasitic power based on hydrogen compression to 200 psi

Program Approach

- Phase I Define Concepts
 - Technoeconomic Feasibility Study
 - Define Development Program
- Phase II Bench-Scale HTM Development
 - A Develop and Test HTM Alloy and Substrate
 - B Integrate HTM and WGS in Single Tube Tests
- Phase III Multi-Tube Reactor Development
 - Pilot Scale Demonstration
 - Define Mass Production Methods



OTM Reactor Synthesis gas generation $CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO$ $CH_4 + H_2O \rightarrow 3H_2 + CO$ HTM Reactor
Water-gas shift reaction
CO + H₂O → H₂ + CO₂
Hydrogen Separation

OTM/HTM Concept Preferred Process - Sequential Reactors

OTM Reactor Synthesis gas generation $CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO$ $CH_4 + H_2O \rightarrow 3 H_2 + CO$

HTM Reactor Water-gas shift reaction $CO + H_2O \rightarrow H_2 + CO_2$ **Hydrogen Separation**

Phase IIA Plan

- Select Substrate
 - Strength, Thermal Expansion Match
 - Metal or Ceramic
- Select Alloy
 - Flux, Life, Cycling, Contaminant Resistance (S, CO, ...)
- Membrane Testing
 - Confirm Performance in Simulated Syngas Environment
- Process Economics
 - Confirm Membrane is Cost-Effective
- Phase IIB and Phase III Plan

Project Safety

- Safety reviews conducted for all equipment
- All applicable external and internal standards followed
- Potential safety issues will be identified as testing progresses
 - Incorporate safety information in component design
- FMEA or HAZOP to be performed after detailed PFD is defined

Program Timeline

 7/00 -	2/0	2	2/03-	-8/05		9/05-	12/06	
Phas	e I		Phas	se II		Pha	se III	
	1	2	3 4		5	6	7	89

Phase I - Feasibility

- 1 Selected Two-Stage Process with Pd Membrane
- 2 Assessed Economics Vs. Current Options

Phase II - Hydrogen Membrane Development

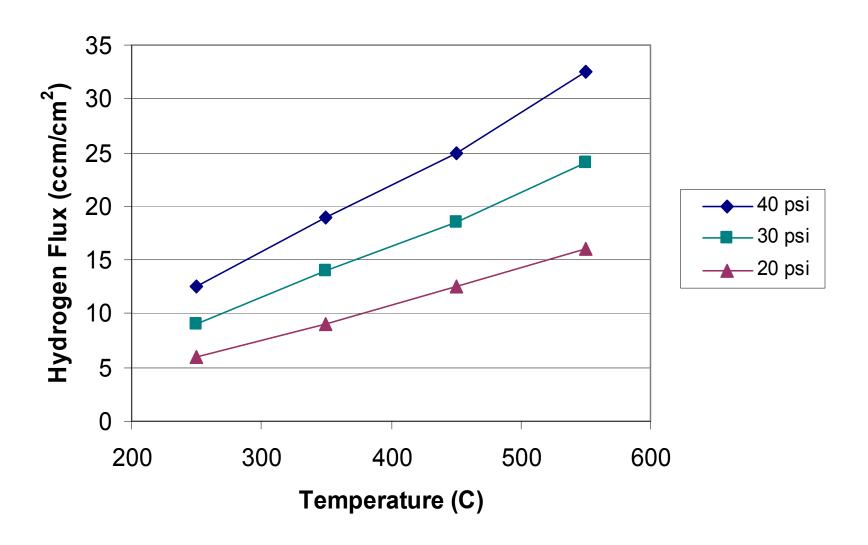
- 3 Select Alloy and Substrate
- 4 Membrane Production and Testing
- 5 Verify Reactor Performance and Update Process Economics

Phase III - System Design and Testing

- 6 Design (DFMA Focus) and Fabricate Multi-Tube Pilot Unit
- 7 Operate Pilot Unit
- 8 Verify System Performance and Update Process Economics
- 9 Develop Commercial Offering

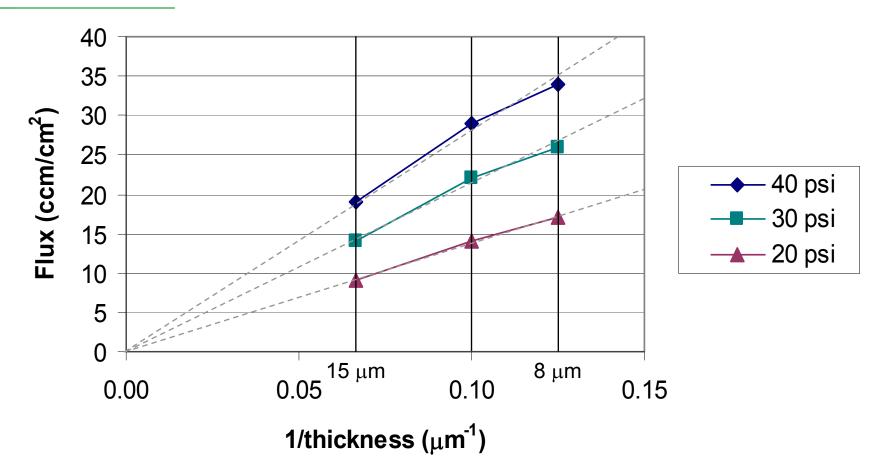
Accomplishments and Progress

- Pd-Ag alloy composite membrane tubes produced that are leak tight with reasonable flux
- First successful test in September
- Flux has almost doubled in the last 5 months
- > Pore size decreased from > 50 μ m to < 5 μ m
- Alloy and substrate optimization in progress
- Initial economic analysis looks promising
 - Pd/Ag cost for 2000 scfh H₂ production is under \$2500 for 10-μm film


Substrate Progress

Substrate	Pore Size	Nitrogen Leak	Hydrogen Flux
Fabrication	(µm)	Rate, 25°C	40 psi 550°C
Date		(ccm/cm²)	(ccm/cm²)
Feb 2003	> 50		N/A
Mar-Apr	50		N/A
Apr-Jun	20	20 at 10 psid	N/A
Jun-Aug		3 at 5 psid	N/A
Sep-Nov	5-10	1 at 30 psid	18.8
Dec-Mar	< 5	< 1 at 30 psid	33

Progressive changes in pore former and fabrication method have enabled significant reduction in pore size, and corresponding film thickness


Palladium Membrane Flux

Palladium Membrane Flux

- Further substrate improvement is necessary
 - Film needs to be less than 2 μm to meet target flux

Accomplishments vs. Targets

	Current	2005	Next Step
Flux (scfh/ft²)	22	100	Improve substrate and coating
Cost (\$/ft ²)	150	100-150	Decrease substrate and coating costs
Durability (hrs)	> 200	50,000	Conduct life test
Operating Temp (°C)	300-600	300-600	none
Parasitic Power (kWh/1000 scfh)	3.2	3.0	H ₂ compression outside current program

Flux based on 20 psid hydrogen pressure at 400°C

Future Work (2004-05)

Complete Phase IIA

- Demonstrate Pd membrane performance in non-reactive environment
- Confirm that the OTM/HTM system can produce hydrogen at low cost

Start Phase IIB

- Demonstrate Pd membrane performance in single tubes integrated with water gas shift reaction
- Confirm that the OTM/HTM system can produce hydrogen at low cost

Interactions and Collaborations

Praxair

- Leader in hydrogen purification, production, and distribution
- Leader in electroceramic materials dielectrics, superconductors, ...
- Overall program lead
- Substrate development
- Process development and economics

Research Triangle Institute

- Membrane Development
- Palladium Coating
- Membrane Testing

> Joint

- Membrane Production
 - Unique opportunity to integrate substrate and alloy development
 - Iterative process
- Reactor Design

2003 Questions

- Main weakness sited was lack of hard data
 - Testing has now begun and data were presented
- 2003 Recommendation Add partners to help with pretreatment and reforming
 - Phase II focuses on HTM development
 - We are considering adding a partner to help with WGS catalyst

Integrated Ceramic Membrane System for H₂ Production

Cooperative Agreement: DE-FC36-00GO10534

Questions?

DOE Annual Merit Review Meeting May 24, 2004

